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Abstract

Thickeners for solid±liquid separation are still designed and controlled empirically in the mining
industry. Great e�orts are being made to develop mathematical models that will change this situation.
Starting from the basic principles of continuum mechanics, the authors developed a phenomenological
theory of sedimentation for ¯occulated suspensions which takes the compressibility of the ¯ocs under
their own weight and the permeability of the sediment into consideration. This model yields, for one
space dimension, a ®rst-order hyperbolic partial di�erential equation for the settling and a second-order
parabolic partial di�erential equation for the consolidation of the sediment, where the location of the
interface with the change from one equation to the other is, in general, unknown beforehand. This
initial-boundary value problem was analyzed mathematically, and transient solutions are obtained for
several continuous feed and discharge ¯ows. A ®nite di�erence numerical method is used to calculate
concentration pro®les of the transient settling process, including the ®lling up and emptying of a
thickener. # 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Sedimentation; Continuous thickening; Degenerate parabolic quasilinear partial di�erential equation;
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1. Introduction

The settling of ¯occulated suspensions is a subject that has attracted the attention of many
authors. From the early works of Mishler (1912) and Coe and Clevenger (1916) to the recent
book edited by Tory (1996), several research workers and engineers have contributed to a
theory of thickening. Many of these works have been of empirical nature, but in the last
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twenty years, a phenomenological theory has evolved that permits a clear understanding of the
phenomena occurring during the sedimentation in settling columns and in continuous
thickeners. The book by Tory (1996) gives a thorough review of this theory.
In spite of the fact that the phenomenological theory of sedimentation is widely accepted,

only steady state solutions have been discussed and used for thickener design, as reviewed by
Concha and Barrientos (1993). In this work, we present a transient solution to batch and
continuous sedimentation of ¯occulated suspensions.
The phenomenological model leads to a scalar conservation law valid in the interior of the

thickener which is of the hyperbolic type [corresponding to the theory of Kynch (1952)] for
hindered settling and of the parabolic type for the compressible sediment layer. The location of
the interface between both is, in general, unknown beforehand, which constitutes the main
mathematical di�culty of the model. Initial and boundary conditions to describe the initial
concentration and the feeding and discharge conditions complete the sedimentation process.
In Section 1, we brie¯y summarize the model describing the settling behaviour of a

¯occulated suspension in a continuous thickener, which results in the initial-boundary value
problem mentioned above. This problem was analyzed by BuÈ rger (1996) and by BuÈ rger and
Wendland (1998a, b). The results will be addressed in Section 2. In Section 3 we suggest a
numerical algorithm to solve the problem and present numerical examples for several transient
batch and continuous sedimentation processes. In Section 4, we discuss our results.

2. Phenomenological theory of sedimentation with compression

2.1. The ideal continuous thickener

We consider sedimentation in a so-called ideal continuous thickener (ICT) as shown in Fig. 1.
An ICT is a cylindrical vessel showing no wall e�ects and in which all ®eld variables are
assumed to be constant across each cross section so that they depend only on the variables
height z and time t. At height z= L, a surface feed and at z=0, a surface discharge are
provided for continuous operation. An ICT without feed or discharge is a settling column for
batch sedimentation, which we will include as a special case. Furthermore, we assume that the
¯ocs begin to touch each other at a critical volumetric solid concentration value fc, while they
perform hindered settling for volumetric solid concentrations f< fc.

2.2. Constitutive assumptions

The description of the ¯occulated suspension (see Concha et al., 1996) requires several
constitutive assumptions to specify the choice of material, ¯occulant, thickener design and
manner of operation:

1. the solid particles are small with respect to the sedimentation vessel and have the same
density;

2. the solid and liquid components of the suspension are incompressible and there is no mass
transfer between them;
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3. the suspension is entirely ¯occulated at the beginning of the sedimentation process;
4. the solid component can perform only a one-dimensional simple compression motion;
5. both solid and liquid components behave as elastic, that is, inviscid ¯uids;
6. gravitation is the only body force.

Such a suspension can be considered as superimposed continuous media with two components.
We note that the assumption that the ¯uid behaves as an inviscid ¯uid is based on the
assumption that the friction associated with the ¯uid±¯uid interaction, that is, the viscous ¯uid
stress, is much smaller than the one associated with the solid±¯uid interaction (Whitaker, 1986;
Concha et al., 1996). Therefore, the viscous ¯uid stress will be neglected. The solid component
will be regarded as an elastic ¯uid as well, since a speci®c solid concentration is associated with
each weight of solid in the sediment. These two assumptions are also made in the rheological
model of ¯occulated suspensions by Landman and White (1994).

2.3. Dynamic sedimentation process

These assumptions lead to four scalar ®eld equations valid wherever the variables are
smooth,
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Fig. 1. Ideal continuous thickener (ICT).
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Here, vs and vf are the solid and ¯uid component velocities, qÃ=fvs+ (1ÿ f)vf is the volume
average velocity of the suspension which can be controlled externally, vr= vsÿvf is the relative
solid±¯uid velocity, rs and rf are the solid and ¯uid mass densities, ps and pf are the solid and
¯uid pressures, g is the acceleration of gravity, and a(f) and b(f) are scalar functions de®ning
the solid-¯uid interaction force per unit volume. Together with the appropriate Rankine±
Hunoniot jump conditions (Concha et al., 1996), these equations form a dynamical
sedimentation process.

2.4. Simplifcations

First, we introduce characteristic variables, namely, the height of the thickener assumed to
be H11 m, the falling velocity of a single solid particle, v1110ÿ4 m sÿ1, and the time a
single ¯oc needs to fall through the thickener, t0=H/v11104 s. Rewriting Eqs. (1) to (4) with
dimensionless variables using these quantities, the left-hand sides of the linear momentum
equations will contain the Froude number of the ¯ow, Fr= v 21/(Hg) as a factor, and will be
neglected as Fr110ÿ9. Next, the theoretical variables pf and ps are replaced by experimental
variables, viz. the pore pressure p and the e�ective solid stress se, where

pt�z; t� � pf�z; t� � ps�z; t� � p�z; t� � se�z; t� �5�
is valid for the total pressure pt. Assuming that the volume porosity in the sediment equals the
surface porosity, we obtain pf = (1ÿ f)p and ps=fp+ se, and from (3) and (4)

@

@z
�fp� � @

@z
se � ÿrsfg� b�f� @f

@z
ÿ a�f�vr; �6�
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@z
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@z
� a�f�vr: �7�

Considering (7) at equilibrium, which is attained for t41 in a settling column, the general
expression b(f)= p(f) is obtained. Inserting this and the excess pore pressure
pe=pÿ rfg(Hÿ z) (which is an experimental variable as well) into (6) and (7) simpli®es these
equations to

@se
@z
� ÿDrfgÿ a�f�vr

1ÿ f
; Dr � rs ÿ rf; �8�

@pe
@z
� a�f�vr

1ÿ f
: �9�

Consequently, the material speci®c behaviour of the suspension is described only by the choice
of the functions a(f) and se(f) in Eq. (8). For the solid volume ¯ux per unit area given by fvs,
we obtain from (8) and the de®nition of qÃ
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fvs � q̂fÿ f�1ÿ f�2
a�f�

�
Drfg� @se�f�

@z

�
: �10�

Obviously, se(f)=0 for f<fc is valid, and se is a monotonically increasing function of f for

fefc. Thus, the choice of se satisfying this and

s 0e�f�
� 0 for f < fc;
� 0 for f � fc

�
is made with parameters to be obtained from experiments. We introduce the batch Kynch solid

¯ux density function fÃbk and the solid ¯ux density function fÃ:

f̂bk�f�z; t�� � ÿDrgf
2�1ÿ f�2
a�f� ; f̂�f�z; t�; t� � q̂�t�f� f̂bk�f�:

Note that the choice of a functional form for fÃbk is equivalent to choosing one for a(f). Using

the new variables q(t)=qÃ (t)/L, f bk(f)= fÃbk(f)/L, f(f, t)= fÃ(f, t)/L and f(f)= fÃ(f)/L, and

considering the dimensionless independent variable x=z/L and the dimensionless ®eld variable

u(x, t)= f(Lx, t), the continuity Eq. (1) takes the form

@

@t
u�x; t� � @

@x
f�u; t� � @

@x

�
ÿ fbk�u� s

0
e�u�

LDrug
@u

@x

�
; �11�

where qÃ=qÃ(t) for smooth regions is a result of (2). We note that for u< fc the parabolic

Eq. (11) degenerates into the hyperbolic equation

@

@t
u�x; t� � @

@x
�q�t�u� fbk�u�� � 0

of Kynch's theory for continuous thickening (see Bustos and Concha, 1996; Bustos et al.,

1990a). In general, (11) is a quasilinear degenerate parabolic partial di�erential equation where,

by introducing the notation

a�u� � ÿfbk�u� s
0
e�u�

LDrgu
�12�

and requiring that q(t)E0 and

fbk�0� � fbk�1� � 0; fbk�u� < 0 for 0 < u < 1;

the degeneracy

a�u�
� 0 for u < fc : �11� is hyperbolic;
> 0 for fc � u < 1 : �11� is parabolic;
� 0 for u � 1 : �11� is hyperbolic

8<:
becomes evident. Putting formally f bk(u)=0 for u<0 and u>1, we see that (11) degenerates

into the scalar convective equation
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@u
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� q�t� @u

@x
� 0

for u<0 and u>1. However, these cases have no physical meaning and can be excluded
(BuÈ rger and Wendland, 1998a). The location of the type change is not known beforehand. We

are interested in solutions of Eq. (11) on a space-time ``cylinder'' �QT={(x, t): 0E xE1,
0E tE T}, and assume that the following initial and boundary conditions are given: for t=0,

an initial concentration pro®le u0(x), 0E xE1 is given, at x=1, a concentration value f1(t) is

prescribed for 0E tE T, and the control of the discharge at x=0 corresponds to prescribing
that the solid volume ¯ux density across z=0 should reduce to qÃ(t)f(0, t), i.e.

fbk�u� ÿ a�u� @u
@x

����
x�0
� 0; 0 � t � T

should be valid.

For the calculation of the excess pore pressure pe, we obtain from Eqs. (8) and (9)
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: �13�

Note that the excess pore pressure ®eld can be calculated after u(x, t) has been calculated on
�QT. An appropriate boundary condition for the integration of (13) from x=1 to x=0 is

pe�1� � 0 �14�
(Concha et al., 1996), hence we obtain

pe�x; t� � LDrg
Z 1

x

u�x; t�
�
1ÿ a�u�x; t��

fbk�u�x; t��
@u

@x
�x; t�

�
dx: �15�

However, since it is possible to calculate the pressure a posteriori, this quantity will not be
included in the formulation of the initial-boundary value problem.

Furthermore, using (10) and the de®nition of qÃ(t), the solid and ¯uid phase velocities can be

written as

vs � q̂�t� � f̂bk�f�
f

�
1� s 0e�f�

Drfg
@f
@z

�
; vf � q̂�t� ÿ f̂bk�f�

1ÿ f

�
1� s 0e�f�

Drfg
@f
@z

�
or as

vs � L q�t� � fbk�u�
u
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1� s 0e�u�
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�� �
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�� �
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3. Mathematical model

Summarizing, the following initial-boundary value problem (IBVP) should be considered:

@u

@t
� @

@x
f�u; t� � @

@x

�
a�u� @u

@x

�
; �x; t� 2 QT � �0; 1� � �0;T�; �17�

u�x; 0� �u0�x�; 0 � x � 1;

fbk�u� ÿ a�u� @u
@x

����
x�0
�0; 0 � t � T;

u�1; t� �f1�t�; 0 � t � T: �18�
Since Eq. (17) is nonlinear, the solution might develop discontinuities even if the initial and
boundary data are smooth, hence we have to consider weak solutions of the IBVP. To obtain
uniqueness, a weak solution must satisfy an additional entropy criterion or selection principle.
In this case, it will be a generalized solution. Existence and uniqueness of generalized solutions,
as well as entropy boundary and jump conditions, were obtained by BuÈ rger (1996) and by
BuÈ rger and Wendland (1988a, b). We refer to these works and to the review article by Concha
and BuÈ rger (1998) for details.

4. Numerical solution

4.1. Numerical algorithm

The approximate solution to the IBVP is obtained by operator splitting. To calculate an
approximation v for the ®rst time step:

1. calculate vÃ(x,Dt) as the approximate solution of vt=(a(v)vx)x with v(x,0)= u0(x) and
boundary conditions evaluated at t=Dt;

2. if q(0)<0, then calculate vÄ(x,Dt) as the solution of the linear convective equation
vt+q(0)vx=0 setting v(x,0)= vÃ(x,0), evaluated at t=Dt, otherwise put vÄ(x,Dt)= vÃ(x,Dt);

3. calculate v(x,Dt)1u(x,Dt) as the solution of the hyperbolic conservation law
vt+ ( f bk(v))x=0 with v(x,0)= v(x,Dt) and with boundary conditions.

The numerical treatment of these steps is the following:

1. The di�usion term is discretized implicitly (as otherwise the CFL condition would preclude
calculations with a ®xed value of l=Dt/Dx=const.) in the form

a�u� @u
@x

1yan�1j

�
@u

@x

�n�1
� �1ÿ y�anj

�
@u

@x

�n

; y 2 �0; 1�

where y=0 corresponds to a fully explicit, y=1 to a fully implicit scheme; we chose
y=0.5. Replacing the partial derivatives by ®rst order ®nite di�erences leads to a
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tridiagonal linear equation system for each time step, which is solved by Gauû±Seidel

method. The discretization is only made for j=0, . . . , max{1E jE N: v njefc}.

2. The linear convective equation is solved by a second order upwind method:

vn�1j � vnj ÿ lq�tn��ÿ3vnj � 4vnj�1 ÿ vnj�2�=2; j � ÿ2; . . . ;N:

3. For the hyperbolic equation, we use a modi®cation of the Lax±Friedrichs method, the non-

oscillatory central di�erence method (Nessvahu and Tadmor, 1990):

vn�1=2j �vnj ÿ l�f0�nj =2;

vn�1j � 1

2
�vnjÿ1 � vnj�1� �

1

4
��v0�njÿ1 ÿ �v0�nj�1� ÿ

l
2
�fbk�vn�1=2j�1 � ÿ fbk�vn�1=2jÿ1 ��:

The numerical derivatives are calculated by a minmod limiter:

MM�x; y; z� � sgnx minfj x j; j y j; j z jg if sgn x � sgn y � sgn z

0 otherwise;

�
�v0�nj �MM�k�vnj�1 ÿ vnj �; �vnj�1 ÿ vnjÿ1�=2; k�vnj ÿ vnjÿ1��;

�f0�nj �f0bk�vnj ��v0�nj ; k 2 �1; 4�:
This method is second order accurate for smooth solutions of hyperbolic conservation laws

and has a total variation diminishing (TVD) property for Cauchy (i.e. initial-value)

problems if lmaxu j f0bk�u� j� �
������������������������
1� 2kÿ k2
p ÿ 1�=k:

The boundary condition at x=0 is obtained by putting f bk=0 wherever f bk is evaluated for

xE0. The auxiliary solution values v nÿ1 and v nÿ2 are calculated in the convective step. For

batch settling, we put v n+1
j = v n+1

0 for j= ÿ2, ÿ1. For the boundary condition at x=1, we

note that in the examples presented in this work, we can always set v n+1
j =f1 (t n+1) for

je N. In general, entropy boundary conditions have to be considered (BuÈ rger and Wendland,

1998b), which take into account that condition (18) is not always satis®ed in the pointwise

sense. This is the case if the sediment level f= fc rises above feeding level, that is, when the

thickener over¯ows.

In some examples, the excess pore pressure pe is calculated by a discrete version of (13) and

(14),

�pe�nN � 0; �pe�njÿ1 � �pe�nj � LDxDrgvnj r
n
j ; rnj � 1ÿ a�vnj �

fbk�vnj �
vnj ÿ vnjÿ1

Dx

and in one example, the local solid and liquid phase velocities vs and vf are calculated by

�vs�nj � L

�
q�tn� �

fbk�vnj �rnj
vnj

�
; �vf�nj � L

�
q�tn� ÿ

fbk�vnj �rnj
1ÿ vnj

�
:

In all calculations, we used the parameters Dx=1/400 and k=1.3.
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4.2. Experimental data

We consider a Kynch batch ¯ux density function of the type introduced by Richardson and
Zaki (1954) and an e�ective solid stress function with parameters obtained by experimental
measurements (Becker, 1982):

f̂bk�f� � ÿ 6:05� 10ÿ4f�1ÿ f�12:59m sÿ1;

se�f� �
0 for f < fc � 0:23

5:35 exp�17:9f� Pa for f � fc: �19�
�

However, the approach (19) leads to a discontinuous di�usion coe�cient for which the
mathematical analysis is not valid. So we introduce a function c which smoothes out the jump
that the factor s 0e(u)/u, occurring in the de®nition (12) of a(u), contains. We assume that the
smoothing function is valid on a transition interval [fc,fc+d], and de®ne c to be the cubic
polynomial satisfying c(fc)=0, c 0(fc)=0, c(fc+d)=se(fc+d)/(fc+d) and

c 0�fc � d� � fs 0e�fc � d��fc � d� ÿ se�fc � d�g=�fc � d�2:
The resulting di�usion coe�cient is

a�u� � ÿ fbk�u�
LDrg

0 for u < fc;
c�u� for fc � fc � d;

s 0e�u�=u for u > fc � d:

8<: �20�

We use the parameters g=9.81 m sÿ2, Dr=1500 kg mÿ3 and L=1.742 m, L=2 m or
L=6 m. Fig. 2 shows the Kynch batch ¯ux density function f bk and the resulting di�usion
coe�cient with d=0.01 and L=6 m.
We note that the parameter l, given in the numerical examples, refers to the transformation

to feeding level height one and a time unit of 10,000 s, which is more convenient for numerical

Fig. 2. (a) Kynch batch ¯ux density function fÃbk; (b) the di�usion coe�cient a(u) for feeding level height L=6 m.
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calculations. Thus, calculations were made for the unit interval as spatial domain, with the
thickener height being considered by the parameter L in the denominator of a(u).

4.3. Batch settling

4.3.1. Example 1: batch settling of a uniform suspension.
Consider a suspension of initial concentration f0=0.123 in a settling column of height

L=2 m. Fig. 3 shows some concentration and excess pore pressure pro®les, Fig. 4, the
corresponding pro®les of solid and ¯uid phase velocities and Fig. 5 the settling plot for a
simulated sedimentation time of T=60,000 s. We note that the 400 discrete solution points of
the concentration pro®les have been interpolated linearly, and that the concentration line
f=0.11 produced by the numerical solutions in Figs. 5 and 8 of example 3 appears where the
discontinuity between zero and f0 of the exact solution is located.

4.3.2. Example 2: comparison with experimental measurements.
To compare the results of the phenomenological theory and of the numerical method with

experiments, we use the result of Been and Sills (1981). They studied the sedimentation of a
suspension of soft soil in a settling column of height L=1.742 m with an initial concentration
of f0=0.05264. The experimental data, which were presented graphically by Been and Sills,
lead to the following constitutive equations:

f̂bk�f� �
ÿ1:39� 10ÿ4f�1ÿ f�28:59 m sÿ1 for f �� 1

12 ;

ÿ8:0� 10ÿ9f2exp�0:7675�1ÿ f�=f� m sÿ1 for f > fc

(

Fig. 3. Concentration and excess pore pressure pro®les for batch sedimentation with compression l=0.01. The

pro®les shown correspond to the indicated times.
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and

se � 0 for f � fc

4:0 exp�21:265f� Pa for f > fc:

�
The result is shown in Fig. 6 where Been and Sills' settling plot is compared with our
predictions. Note that the suspension or sediment mass densities measured by Been and Sills

Fig. 4. Solid and ¯uid phase velocity pro®les for batch sedimentation with compression; the pro®les shown
correspond to the indicated times.

Fig. 5. Settling plot for batch settling showing sedimentation with compression using l=0.01 and T=60,000 s. The
dotted lines correspond to the annotated concentration values.
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have been transformed into volumetric solid concentrations. The corresponding excess pore
pressure pro®les are given in Fig. 7.

4.3.3. Example 3: repeated batch sedimentation.
An interesting modi®cation of the previous example is obtained if we suppose that after a

certain time interval the pure liquid above the (nearly) compressed sediment is replaced again
by suspension of the initial homogeneous concentration f0. We consider the same data as used

Fig. 6. Comparison of the simulation with the experimental settling plot of Been and Sills (1981).

Fig. 7. Excess pore pressure pro®les at indicated times. The dashed line corresponds to the excess pore pressure
pro®le at t=4 h 45 min given by Been and Sills (1981).
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in example 1, but for t=300,000 s, all concentration values less than fc are replaced by
f0=0.123. Fig. 8 shows the corresponding numerical simulation.

4.3.4. Example 4: expansion of overcompressed sediment.
In our last example (Fig. 9) for batch thickening, we consider a settling column of height

2 m (i.e. batch sedimentation: qÃ00 and f100) which at t=0 is assumed to contain, in its
lower 20%, an overcompressed sediment of concentration 0.6:

Fig. 8. Settling plot for repeated batch sedimentation using l=0.2 and T=900,000 s. The dotted lines correspond

to the annotated concentration values.

Fig. 9. Concentration lines for expansion of overcompressed sediment using l=0.02 and T=60,000 s. The dotted
lines correspond to the annotated concentration values.
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f0�z� � 0:6 for 0 � z � 0:4 m;
0 for 0:4 m < z � 2 m:

�
We observe that at t= t0 the sediment immediately starts to expand and tends to an
equilibrium state with the sediment±liquid interface at a height of about 0.72 m. This
expansion after coming in contact with water is due to the description of the solid component
as an elastic ¯uid.

4.4. Continuous thickening

4.4.1. Example 5: the ®lling and emptying of a thickener.
Fig. 10 shows the settling plot for this example. We start with a thickener full of water,

f000, with a feeding level height of L=6 m. Its discharge is kept closed for 0E tE300,000 s
and then opened to obtain:

q̂�t� � 0 for 0 � t � 300;000 s;
ÿ2:5� 10ÿ5 m sÿ1 for 300;000 s < t � T � 450;000 s:

�
For 0< tE120,000 s, the thickener is fed with a feeding ¯ux density of

f̂F � ÿ9:3826� 10ÿ6 m sÿ1

and at t=120,000 s the feeding is discontinued, fÃF=0. Since fÃF= fÃbk(0.02), this is equivalent
to prescribing f1=0.02, i.e. we choose

f1�t� � 0:02 for 0 < t � 120;000 s;
0 for 120;000 s < t � T � 450;000 s:

�

Fig. 10. Continuous thickening: numerical solution for ®lling up and emptying of a thickener using l=0.125 and
T=45,000 s. The dotted lines correspond to the annotated concentration values.
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We observe that the sediment rises at almost constant speed. At t=120,000 s, a discontinuity
between the concentration values zero and 0.02 starts to propagate from z= H into the
thickener at a speed of

s � f̂bk�0:02�=0:02 � ÿ4:6913� 10ÿ4 m sÿ1

and arrives at the sediment level at an approximate height of 3.30 m at

t � 120;000 s� 2:70 m=s1125755 s:

Since the thickener remains closed, the sediment compresses further by its own weight, until
the thickener is opened at t=300,000 s. It has emptied entirely by t1435,000 s.

4.4.2. Example 6: the transition between steady states.
Next, we consider steady states and transitions between them. A steady state is the mode in

which a continuous thickener is expected to operate normally in industrial applications. It is
fed with a suspension of constant concentration such that the feeding solid volume ¯ux density
fÃF= fÃ(f1, t)=qÃf1+ fÃbk(f1) and its discharge solid volume ¯ux density fÃD=qÃf(0, t) are equal,
fÃF= fÃD. The conditions for the existence of a steady state can be obtained by considering time-
independent solutions of Eq. (17), i.e. of the ordinary di�erential equation

q̂f 0 � f̂ 0bk�f�f 0�z� �
�
ÿ f̂bk�f�s 0e�f�

Drgf
f 0�z�

�0
) q̂f� f̂bk�f� � f̂bk�f�s 0e�f�

Drgf
f 0�z� � C:

We assume that a desired discharge concentration fD is given, from which, by the boundary
condition at z=0, we conclude that the integration constant must equal C=qÃfD. Thus, the
concentration pro®le in the compression zone results in the solution of the ordinary initial
value problem

f 0�z� � ÿ Drgf

s 0e�f�f̂bk�f�
�q̂f� f̂bk�f� ÿ q̂fD�; z > 0 �21�

f�0� � fD:

Eq. (21) is integrated up to the value f(z)= fc. For sedimentation to take place, f 0(z)E0,
that is

q̂f� f̂bk�f� � q̂fD for f 2 �fc;fD�
must be satis®ed so that the right hand side of Eq. (21) is nonpositive (see Concha et al.,
1996). If the ¯ux density function possesses a local maximum at f= fM, then the condition
fc<fD<fDmax

, where fDmax
is obtained by fÃ(fM)=qÃfDmax

, must be satis®ed. In the case of a
monotonically decreasing ¯ux density function, fDmax

is given by fÃ(fc)=qÃfDmax
. The boundary

value at z= L is obtained by solving the equation

f̂�f1� � q̂fDmax
; f1 < fM
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for f1. Fig. 11 shows an example for the construction of fDmax
and of f1 for a given value

of fD.
We now consider a numerical example of transitions between (approximate) steady states.

We calculated the following steady states f i(z), i=1,2,3 in advance for a feeding level height
of L=6 m:

i qÃ i [10ÿ5 m sÿ1] f i
D fÃiF= fÃiD [10ÿ5 m sÿ1] f i

1 Sediment height l i [m]

1 ÿ1.5 0.36 ÿ0.54 0.00983189 1.00
2 ÿ0.5 0.42 ÿ0.21 0.00369112 2.49
3 ÿ3.0 0.35 ÿ1.05 0.02139377 1.54

We choose the steady state f1(z) as the initial state in the continuous thickener,
f0(z)= f1(z), and choose the boundary datum f1(t)= f 1

1 correspondingly. At t=50,000 s,
we change to the next steady state. Therefore at that time qÃ is changed from qÃ 1 to qÃ 2, causing
a rise of the sediment level. As the feeding ¯ux density remains constant during this change, we
have to change f1(t) from f 1

1 to f 1*
1 , which has to be calculated from

f̂1F � q̂2f1�
1 � f̂bk�f1�

1 �;
resulting, in this case, in f 1*

1 =0.010040585. The sediment rises at an apparently constant
velocity of 0.97� 10ÿ5 m sÿ1 and reaches the sediment level l2 at t=205208 s. Taking into
account the propagation velocity of the discontinuity between f 1*

1 and f 2
1, the change of f1(t)

is made at t=198,350 s. We observe that the sediment tends toward the calculated second
steady state, and that the discharge concentration approximates the corresponding value

Fig. 11. The set of admissible discharge concentrations and the construction of the boundary datum f1 for
fD=0.36 for fÃ(f)= qÃf+ fÃbk(f) with qÃ= ÿ1.5� 10ÿ5 m sÿ1 and fc=0.23.
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f 2
D=0.42. At t=500,000 s, we change qÃ(t) from qÃ 2 to qÃ 3, and by the continuity of the

feeding ¯ux, f1(t) from f 2
1 to f 2*

1 . The value f 2*
1 =0.003532479 is obtained from

f̂ 2F � q̂3f2�
1 � f̂bk�f2�

1 �:
The sediment level will have fallen to l2 by t=538,434 s. The change from f 2*

1 to f 3
1 has to

be carried out before, such that f(z, t)= f 3
1 is valid above the sediment level for te538,434 s.

The change from f 2*
1 to f 3

1 causes a rarefaction wave propagating into the thickener. From
the speed at which the value f= f 3

1 propagates, we obtain that the boundary value f1(t) has
to be changed at t=524,697 s. The desired third steady state f3(z) is approximated well by the
concentration pro®le at t= T=800,000 s, when the simulation ends. Fig. 12 shows the settling
plot for this simulation.

5. Discussion

The phenomenological theory of sedimentation with compression outlined in the ®rst part of
this paper had been proposed before by one of the authors (e.g. in Concha et al., 1996). It has
been analyzed and used so far for the simulation of settling behaviour only under additional
restrictive assumptions which permit an explicit construction of the exact solution. In
particular, the hyperbolic equations and their boundary problems for piecewise constant data
for batch and continuous sedimentation corresponding to Kynch theory have been studied
thoroughly, a formal mathematical framework therefore has been established, and

Fig. 12. Settling plot for continuous sedimentation with transition between approximate steady states using l=0.1

and T=800,000 s. The dotted lines correspond to the annotated concentration values.
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sedimentation processes have been classi®ed (Bustos et al., 1990a,b; Bustos and Concha, 1996;
Concha and BuÈ rger, 1998). Moreover, steady states for sedimentation with compression have
been constructed explicitly (Concha et al., 1996). This paper shows that these results can be
extended to continuous sedimentation with compression. The formal existence and uniqueness
results (BuÈ rger and Wendland, 1998a) are necessary to be able to calculate a numerical
solution at all, and the jump and entropy conditions (BuÈ rger and Wendland, 1998b) indicate
which properties the exact solution, and eventually the numerical algorithm, should possess.
Our numerical algorithm is constructed in a straightforward manner, however it still remains
to prove its convergence formally. Nevertheless, the presented numerical examples indicate that
it works well for practical purposes. The batch sedimentation example 2 agrees well with Been
and Sills' experimental measurements. Example 3 refers to some industrial applications.
Furthermore, the numerical solutions throw up new challenging tasks for the analysis of the
mathematical model, e.g. it should be desirable that the convergence to steady state takes place
in a ®nite period of time. Example 5 shows that the boundary conditions sensibly model the
operation of a continuous thickener, and that the ®lling up from a pure liquid state and the
emptying of the thickener can be modelled. Example 6 corresponds to the most interesting
industrial application, namely the prediction of the behaviour of the sediment between steady
states. Here we observe a stabilization e�ect, i.e. if the feeding and discharge conditions belong
to a steady state, the sediment ``tends'' to the steady state (in a sense yet to be precised) in
time, even from a disturbed initial concentration. Moreover, it should be possible to show
formally that the observed linear growth of the sediment level during transition from a steady
state is a property inherent to the mathematical model, which would allow the construction of
a control model for continuous sedimentation similar to the model in Bustos et al. (1990b) for
the hyperbolic case. All these examples show that our model works reasonably for most
applications, but the expansion of sediment simulated in example 4 is not observed in nature.
Example 4 alerts us to the fact that modelling the solid component as an ideal ¯uid has its
limitations and that a di�erent model should be sought.
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